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Abstract 

The proliferation of operational satellite data has facilitated new capabilities for 

downstream data products with fisheries applications. The Alaska Fisheries Science Center and 

Alaska Fisheries Information Network (AKFIN) have utilized such data accessibility to 

streamline use of satellite sea surface temperature (SST) data. We briefly describe three gridded 

satellite data sets and we present two data products that are updated automatically and regularly 

in a database backend: 1) satellite SST data linked to spatial management regions across Alaska 

and 2) spatially-explicit fishery-dependent data (e.g., observer, fish ticket, and vessel monitoring 

system [VMS] data) linked with satellite SST data. Full gridded data sets apportioned to 

management areas can be queried from the AKFIN database. Alternatively, aggregated data 

products (e.g., time series of SST for individual management regions or ecosystem areas) can be 

accessed via a custom AKFIN SST web service. We demonstrate several queries of the web 

service and illustrate how this product can yield seamless integration with downstream analyses; 

for example, analyzing time series of SST for relevant spatial regions using only a few lines of 

code. For fisheries-dependent sources, SST data were linked to fish tickets, observer, and VMS 

in the Oracle backend from 2002 to the present (millions of records), and new data are 

automatically matched each day. The coding examples that we provide demonstrate how little 

code is required to plot and analyze spatially-explicit time series of SST, the SST at which a 

particular species is caught in trawl fisheries, and how to quickly generate heatmaps of SST 

using the AKFIN process. These simple demonstrations are indicative of new efficiencies to be 

gained through integration of AKFIN tools into our data management system and we describe 

opportunities for expansion of these services. 
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Introduction 

The role of oceanographic and other environmental or ecosystem parameters on the 

productivity of the world’s fish stocks has long been established. Increasingly, such parameters 

are explicitly incorporated into fisheries stock assessments (Holsman et al. 2016, Marshall et al. 

2019), risk assessments (Gaichas et al. 2014); ecosystem reports (Ferriss and Zador 2020, Ortiz 

and Zador 2020, Siddon 2020), or other documents used by fishery managers (e.g., the U.S. 

Regional Fishery Management Councils) to guide decision making. Meanwhile, a growing trend 

in the development of dynamic ocean management tools seeks to incorporate environmental 

information in near real-time to inform stakeholders for bycatch avoidance (Hazen et al. 2018, 

Breece et al. 2021), harmful algal blooms (Harley et al. 2020), avoiding interactions with 

protected species (https://oceanview.pfeg.noaa.gov/whale_indices/), and more. Thus, as NOAA 

moves towards a broader adoption of ecosystem-based fisheries management and dynamic ocean 

management, the accessibility of ecosystem information becomes increasingly critical. 

As global climate changes, water temperatures have been among the most easily 

measured metrics by which to understand how ocean ecosystems are responding. Broad warming 

trends are leading to poleward shifts in the distributions of fish species and the fleets that target 

them (Thorson et al. 2017, Rogers et al. 2019, Pinsky et al. 2020, Fredston et al. 2021), while 

anomalously warm periods or marine heatwaves are driving protracted impacts on ecosystems 

(Suryan et al. 2021) and commercial fish stocks (Barbeaux et al. 2020). The ability to connect 

near real-time data access will be critical for resolving the mechanisms of such changes, and for 

building dynamic ocean management and response tools.  

Satellite-derived sea surface temperature (SST) data are well validated and have been 

available since the early 1980s (Minnett et al. 2019). A proliferation of new technologies, 

sensors, and data products have led to increasingly frequent and spatially resolved SST data with 

latencies as little as one day (Liu et al. 2014, Maturi et al. 2017, Minnett et al. 2019). Moreover, 

the development of programs like NOAA’s CoastWatch and data technologies like 

Environmental Research Division’s data access program (ERDDAP) servers (Simons 2020) have 

facilitated easier access to these data worldwide in near real-time and via a suite of data formats. 

While such technologies have improved data access, challenges still exist for some end users due 

https://oceanview.pfeg.noaa.gov/whale_indices/
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to the large file sizes of high spatial and temporal resolution data sets, difficulty subsetting data 

within irregular polygons (custom spatial strata), and the need for data infrastructure that 

supports operationalization and automation of data ingestion (Welch et al. 2019). 

After assessing the needs of a suite of fisheries biology, stock assessment, and socio-

ecological modeling efforts at the AFSC, we developed an automated and operational framework 

for serving satellite environmental data products for a suite of spatial strata used for fisheries 

management and research in Alaska. These are products initiated by AFSC requests, and 

developed by AKFIN and AFSC staff in the AKFIN database environment. We describe the data 

used, the process for joining the data to spatial strata, data access through customized web 

services (data queries via URL), and backend database merges with fishery-dependent data 

(e.g., observer, fish ticket, VMS data). 

Methods and Results 

Satellite Data 

Three daily satellite SST products were accessed via NOAA ERDDAP servers (Simons 

2020) and downloaded as netCDF files within the Oracle database at the Alaska Fisheries 

Information Network (AKFIN), maintained by the Pacific States Marine Fisheries Commission. 

The SST data are publicly available (via ERDDAP API or GUI) but by downloading them into 

the AKFIN backend, they can be seamlessly integrated, behind the NOAA firewall, with 

confidential fishery-dependent data sets like observer, VMS, fish ticket data. These SST products 

provide gap-free data each day with a 1-2 day latency period. 

The SST data sets used are from NOAA Coral Reef Watch (CRW), NASA Jet Propulsion 

Laboratory Multi-Scale Ultra-High Resoultion (MUR), and NOAA National Center for 

Environmental Information Optimal Interpolation (OI) (Table 1). The data sets vary in spatial 

resolution and time-span. MUR SST has the finest spatial resolution while OI SST is the most 

course. Meanwhile OI SST includes the longest time series while MUR has the briefest.
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Table 1. -- Description of the three satellite data sets and their data products in the AKFIN database backend. 

Data set 
Spatial 
resolution Duration 

Gap-
free 

AKFIN 
spatial 
strata 

AKFIN  
Web 
Service Citation Online source 

Multi-ultra resolution (MUR) 1 km 2002 - present X X  Chin et al. 2017 coastwatch.pfeg.noaa.gov/erddap/griddap/jplMURSST41.html 

Coral Reef Watch (CRW) 5 km 1985 - present X X X Liu et al. 2015 pae-paha.pacioos.hawaii.edu/erddap/griddap/dhw_5km.html 

Optimal Interpolation (OI) 25 km 1982 - present X X   Reynolds et al. 2007 coastwatch.pfeg.noaa.gov/erddap/griddap/ncdcOisst2Agg.html 
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All three data sets have native formats with longitudes ranging from -180 to +180. 

Because the spatial extent for Alaska waters includes the International Date Line, the data from 

each data set are downloaded via two separate operations each day. One operation downloads the 

negative longitude data from 46°N to 68.8°N and -180°E to -130°E and the second operation 

downloads the positive longitude data from 47.5°N to 60.0°N and 164°E to 180°E. These 

downloads are merged and then clipped to spatial regions of interest within the exclusive 

economic zone in waters off Alaska. 

 

Spatial Strata 

State and federal waters of Alaska include numerous spatial strata that are relevant to 

fisheries management, ecology, and individual species distributions. For example, the Alaska 

Department of Fish & Game (ADF&G) divides Alaska waters into nearly 1,800 statistical areas, 

many of which are 0.5° latitude by 1.0° longitude boxes. Meanwhile, the National Marine 

Fisheries Service (NMFS) divides the same waters into only 25 management areas. These 

regulatory strata are inconsistent with ecological stratifications (eastern Bering Sea, Gulf of 

Alaska, and the Aleutian Islands) identified for the same waters. These ecosystem regions, even 

when subdivided, do not necessarily align with spatial strata identified for individual fish or crab 

stocks, so stock assessment scientists and fishery managers are often interested in yet further 

customized spatial boundaries. Thus, it is not surprising that different users of environmental 

information like SST may want those data aggregated or clipped to a different (or multiple) 

spatial boundaries. 

To develop operational data products across Alaska’s suite of spatial strata, we undertook 

extensive point-in-polygon processing operations to apportion the individual latitude-longitude 

coordinates for all three SST data sets to each of the polygons from a suite of shapefiles 

(ADF&G management areas, NMFS management areas, ecosystem regions [from NMFS 

Ecosystem Status Reports], Bering Sea Integrated Ecosystem Research Program [BSIERP] 

regions, Bristol Bay red king crab management areas, and St. Matthew blue king crab 

management areas) (Fig. 1). To avoid repeating the computationally intensive point-in-polygon 

operations, we created spatial lookup tables that are stored in the AKFIN database. Thus, as data 

are downloaded daily from ERDDAP servers across the spatial extent of Alaska’s waters, each 
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SST record is matched via a database join on latitude and longitude to the spatial strata in which 

it falls. 

 

 

 

Figure 1. -- Spatial strata in Alaska for which sea surface temperature data have been clipped and 
aggregated within the AKFIN database backend. SST data for these strata can be 
queried and accessed several ways. 

 

In addition to the spatial strata, each gridded SST location was also matched with the 

depth of the water at that location. The marmap library (Pante and Bouhet 2015) in R was used 

to extract the NOAA ETOPO1 bathymetric data (Amante and Eakins 2009). 
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Accessing the Data 

Data ingested into AKFIN can be accessed and used for operational workflows via 

several different methods (Fig. 2). We demonstrate two general methods for accessing the data 

stored in AKFIN. The first method, customized web services (i.e., Application Programming 

Interface or APIs), is ideal for accessing time series of aggregated data (e.g., daily SST averaged 

across a spatial stratum or multiple spatial strata) and for queries less than about 100,000 records. 

This approach leverages a simplified data access point (URL) that is outside of the AKFIN 

firewall and requires no user login. The second method, direct database access, requires 

authentication to access the AKFIN database and relies on SQL queries to extract either 

aggregated data summaries or larger gridded data sets (e.g., millions of data records). In the 

sections that follow, we demonstrate data queries using custom web services and by using direct 

database access via SQL and R. 

 

Figure 2. -- Data flow diagram for the ingestion, processing, and extraction of satellite sea 
surface temperature data within AKFIN. 
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Customized Web Service (Web API) 

For queries that are likely to be repeated often or to become part of an automated process, 

customized web services offer a particularly efficient data access option. These web services 

require no accounts, no passwords, no VPN - just internet - and a web service URL can be 

readily embedded into programming applications (e.g., R, Python). An additional convenience is 

that web services allow users to execute queries without storing data locally which is particularly 

helpful for operations that would typically append data to existing files (e.g., adding a new day 

of data to a time series). With this tool, users can easily incorporate SST time series data into 

stock assessments and other workflows. We present a brief introduction of web services here and 

annotated code examples are provided in a supplement. 

The AKFIN web service enables a query of spatially aggregated CRW SST using a URL, 

where the URL contains the query parameters (Fig. 3). For example, in the URL 

“https://apex.psmfc.org/akfin/data_marts/akmp/nmfs_area_crw_avg_sst?nmfs_area=640,” where 

“nmfs_area_crw_avg_sst?” is the name of the dataset and spatial parameter. Currently, spatial 

query parameters include NMFS management areas (nmfs_area) and the Ecosystem Status 

Report subregions (Ecosystem_sub) (e.g., Siddon 2020). This is the daily SST data set averaged 

by nmfs_area. The “?” separates the data set name from the query criteria. To query multiple 

areas, separate the values by a comma. The ecosystem_sub fields available for query include the 

regions within the eastern Bering Sea, Aleutian Islands, and Gulf of Alaska. Spaces in region 

names are filled with “%20.” For example, to query the data for the “Southeastern Bering Sea,” 

for example, add “ecosystem_sub=Southeastern%20Bering%20Sea.” For the Bering Sea and 

Gulf of Alaska, the query filters only data where water depth is between 10 and 200 m (Fig. 4). 

For the Aleutian Islands, a depth filter is not implemented. Current depth limits reflect 

preferences of Ecosystem Status Report contributors but analysts that are interested in data for 

different depth ranges, custom spatial bounds, or aggregated NMFS areas are encouraged to 

contact the authors of this report. 
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Figure 3. -- Configuration of AKFIN web service URL parameters. A) Basic structure of the 
URL B) Multiple areas and time components. C) Additional time arguments. D) 
Importing webservice data into R using the httr package. 
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Figure 4. -- Gridded SST data (light grey) within each ESR region that are averaged to yield the 

daily SST values provided via the AKFIN web service. Continental shelf depth 

filters (10 - 200m) are applied to the Bering Sea and Gulf of Alaska regions while 

the Aleutian Islands regions remain unfiltered. The number of gridded SST values 

vary by region: Western Aleutians (WAI, N = 19538), Central Aleutians (CAI, N = 

17506), Eastern Aleutians (EAI, N = 28031), Northern Bering Sea (NBS, N = 

19495), Southeastern Bering Sea (SEBS, N = 24934), Western Gulf of Alaska 

(WGOA, N = 8780), and Eastern Gulf of Alaska (EGOA, N = 3343). 

 

To add a time component to a query, specify “start_date” and “end_date,” “read_date,” or 

“dates_back” parameters. If no time argument is included, the default behavior is to pull the 

single most recent record. Time parameters should be included after spatial parameters and 

separated by an “&.” Most users will want the entire time series, which starts on 1985-01-01. To 

query the entire time series, specify “start_date” & “end_date.” An “end_date” must be included, 
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but if the user does not know the most recent date of the time series, they can choose an end date 

sometime in the future and it will query all of the data that exist. The full CRW time series for a 

single spatial stratum yields more than 13,000 rows of data per area (i.e., daily data from 1985-

01-01 to present). Dates are queried in the “yyyymmdd” format (e.g., “19871214” queries 

December 14, 1987). The “read_date” argument retrieves data from any date in the time series, 

however, it is necessary to query the date after the desired day. The web service date format 

contains a time component, which is set to 12:00:00Z for each day. SST records were created 

after that time stamp, causing queries to return values for the previous date. Finally, a 

“days_back” parameter specification allows users to query any number of days prior a date of 

interest. If “read_date” is not specified, “days_back” returns the most recent SSTs. 

To access web services using R Statistical Software, we use the R package httr to pull 

data from a URL (Fig. 3), and the data format should be specified as JSON. The data can be 

saved as an object for manipulation or piped directly into downstream functions. Additional 

packages tidyverse and lubridate are recommended for plotting and manipulation but the object 

retrieved using httr could be manipulated using base R instead. Simply pasting the URL into a 

web browser would also display fetched data in that browser. See coding examples in the 

supplement. 

 

Oracle Database Queries 

Some data users prefer the flexibility and transparency of querying raw gridded data 

directly from the AKFIN database. This is particularly useful for larger queries (e.g., millions of 

records) or for exploring data across a suite of different spatial extents (e.g., custom depth 

ranges, shapefiles, etc.). To query directly from the database, users need an AKFIN database 

account, which can be provided by contacting the authors of this document. As we note in the 

web services section, many custom database queries or views can also be automated by working 

with AKFIN staff (via contact with the authors). 

The gridded SST data are stored within the AFSC schema on the AKFIN Oracle database 

and the primary key linking the lookup tables with the gridded data is the ID field (see 

Supplement for examples). In the lookup table, the field is called “ID” and in the CRW SST data 

table it is “CRW_ID.” Spatial columns in a query result may reveal ‘NA’ when the particular 
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latitude - longitude coordinates shown do not fall within any spatial strata represented by those 

columns (SQL Code Input 1). 

 

SQL Code Input – 1: Example SQL query to join the SST data and its lookup table. In this case, 
we query SST (“TEMP”) data that fall within a crab management area and we add a field for 
“Year.” 

SELECT read_date, temp, TO_CHAR(read_date,‘YYYY’) as Year, crab FROM 
afsc.erddap_crw_sst a INNER JOIN  

   (SELECT* FROM afsc.erddap_crw_sst_spatial_lookup WHERE crab <> ‘NA’) b  

ON a.crw_id =b.id 

 

This section’s purpose is to orient users to the structure of the database related to the SST 

data and lookup tables. We assume that users interested in querying the database directly via 

Oracle (e.g., SQL Developer) or through ODBC connections from R or Python are already 

acquainted with the coding and configuration settings. However, users can contact the authors 

for assistance establishing such connections or custom SQL queries. SQL query examples can be 

found in the supplement. 

 

Matching SST Data With Fishery-Dependent Data 

The above sections describe access to gridded or raw SST data that are updated daily 

within AKFIN. In addition to raw SST data access, the daily SST data are also integrated within 

the AKFIN backend to observer, fish ticket, and vessel monitoring systems (VMS) data. The 

observer and fish ticket data use the MUR SST data while the VMS uses CRW SST. Users with 

access to these confidential data sets can find AVG_SST_CELSIUS and 

STDDEV_SST_CELSIUS fields in “comprehensive” data tables located in the COUNCIL 

schema. These comprehensive tables or data marts were developed using base data sources (e.g.., 

comprehensive_obs for observer data), but include auxiliary data and value-added fields to 

support complex analytical queries and multifaceted analyses. VMS data linked to SST can be 

accessed through the comprehensive_vms_v view in the AKFIN_MARTS schema in AKFIN. 

Note that these data are confidential and require authorization for data access.  
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Observer data include latitudes and longitudes of gear deployment and retrieval locations, 

which are matched with the nearest gridded SST data for a given date. The temperature data are 

then averaged across the retrieval and deploy points to yield a single SST datum for each 

observed fishing event. 

Fish ticket spatial data are recorded at the scale of ADF&G statistical areas (typically 0.5 

degree latitude × 1.0 degree longitude), so gridded SST data cannot be matched as directly. 

Instead, daily SST data for all gridded locations within each statistical area (N = 1758) are 

averaged, to yield a single daily datum for each of the statistical areas. These daily average data 

are then matched with the reported statistical areas on fish tickets based on the date that fishing 

was reported to have begun within a particular statistical area. VMS data are simply matched 

with the SST of the position and date of the VMS transmission. Accompanying the average SST 

value for all of the temperature records within each statistical area is also a standard deviation of 

the points used to calculate this area-level daily average. 

 

Discussion 

 

The ability to integrate environmental and fishery data sets in near real-time is 

fundamental to an increasing number of fishery management priorities. However, creating 

automated database infrastructure is beyond the expertise of most users of such data. Working 

with AKFIN programmers, we developed a backend database infrastructure that automatically 

clips SST data to areas of interest identified by a suite of end users at the AFSC. These data can 

then be accessed either in gridded form, using direct database queries, or in aggregate form, 

using customized web services, or APIs. 

The options that we present each have advantages and disadvantages. The web services 

allow users simple and seamless access to data through a URL, which requires no login or 

password. The web services that we describe here are akin to data accessed directly via an 

ERDDAP. The difference is simply that the data have been customized with spatial strata for 

Alaska and they also have a backend component that offers additional utility. Web services can 

be easily incorporated into workflows to support operational data applications, like R Shiny 
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Apps (e.g., https://shinyfin.psmfc.org/ak-sst-mhw/). However, each web service URL is based on 

a backend SQL query that must be pre-meditated and coded by programmers. So, while the end-

users do not need to code any database queries, a programmer does. Meanwhile, direct database 

access requires a VPN connection and a login to the AKFIN database, but once users have 

established this connection, they can customize any SQL queries they want using either direct 

Oracle access or ODBC connections through R, Python, or other data access points. This puts 

total control into the hands of the end-user and much like the web services, database queries can 

also be implemented into operational data flows, though they require a VPN connection and 

additional connectivity parameters. The goal with these combined approaches is to serve a suite 

of users and applications across a range of data task complexities. 

This document is meant to serve two primary purposes. The first is to demonstrate the 

functionality and access to existing environmental data products within AKFIN. The second is to 

give end users a sense of the types of data products and access approaches that can be requested 

and implemented within AKFIN. The spatial extents, satellite data sets, and web service queries 

demonstrated here were chosen based on previous requests or needs from individual data users at 

the AFSC. The framework that we present uses daily SST data but could be extended to other 

environmental data products like chlorophyll, wind, ROMS model extractions, or other data 

identified by stakeholders. The authors of this study are keen to work with end-users and AKFIN 

staff to connect additional data needs with AFSC end-users. Thus, we encourage data users to 

contact us to discuss data access, automation, and operationalization needs and interests. 

https://shinyfin.psmfc.org/ak-sst-mhw/
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R Code Chunk 1. Web service query of sea surface temperature for NMFS Areas 640 for 
“start_date=19850101” through “end_date=19850105.” 

#Load packages 
#library(httr) # For pulling data via a URL 
#library(tidyverse) # Data manipulation 
#library(lubridate) # Date formatting 
 
httr::content( 
httr::GET('https://apex.psmfc.org/akfin/data_marts/akmp/nmfs_area_crw_avg_sst?nmfs_ar
ea=640&start_date=19850101&end_date=19850105'),  
  type = "application/json") %>%  
    bind_rows 

> 

MEANSST NMFSAREA READ_DATE YEAR JULIAN 

6.06 640 1985-01-01T12:00:00Z 1985 001 

5.89 640 1985-01-02T12:00:00Z 1985 002 

5.78 640 1985-01-03T12:00:00Z 1985 003 

5.76 640 1985-01-04T12:00:00Z 1985 004 

 
  

Supplement 

The following section provides examples of R and SQL code inputs and outputs that 

demonstrate the AKFIN SST web services and AKFIN backend SST data connection via Oracle 

SQL. 
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R Code Chunk 2. Web service query of the full time series for NMFS area 640 
(“nmfs_area=640”) from 1985-01-01 to present. To obtain a time series that includes the most 
recent records, specify an end_date that is greater than the current date. Here we us an arbitary 
future date of “end_date=20280101.” Because this query extracts more than 13,000 records, we 
demonstrate by saving to an object and then viewing the structure of that object. However as 
demonstrated in subsequent chunks, it is unnecessary to save the query to an object. 

data <- httr::content(     

httr::GET('https://apex.psmfc.org/akfin/data_marts/akmp/nmfs_area_crw_avg_sst?nmf
s_area=640&start_date=19850101&end_date=20280101'),  
  type = "application/json") %>%  
  bind_rows 
 
str(data) 

> 

## tibble [13,374 x 5] (S3: tbl_df/tbl/data.frame) 
##  $ MEANSST  : num [1:13374] 6.06 5.89 5.78 5.76 5.78 5.92 6 5.92 5.85 5.83 ... 
##  $ NMFSAREA : chr [1:13374] "640" "640" "640" "640" ... 
##  $ READ_DATE: chr [1:13374] "1985-01-01T12:00:00Z" "1985-01-02T12:00:00Z" "1985-01
-03T12:00:00Z" "1985-01-04T12:00:00Z" ... 
##  $ YEAR     : chr [1:13374] "1985" "1985" "1985" "1985" ... 
##  $ JULIAN   : chr [1:13374] "001" "002" "003" "004" ... 
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R Code Chunk 3. Web service query of SST in NMFS area 640 with custom start and end dates. 
This chunk also demonstrates a piped workflow to generate a figure without saving any 
intermediate objects. 

httr::content(   

httr::GET('https://apex.psmfc.org/akfin/data_marts/akmp/nmfs_area_crw_avg_sst?nmf
s_area=640&start_date=19870101&end_date=19880101'),  
  type = "application/json") %>%  
  bind_rows %>%  
  mutate(date=as_date(READ_DATE)) %>%  
  ggplot(aes(date,MEANSST)) +  
  geom_line()+ 
  theme_bw() 

 

> 
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httr::content(   

httr::GET('https://apex.psmfc.org/akfin/data_marts/akmp/nmfs_area_crw_avg_sst?nmf
s_area=640&read_date=20000101'),  
  type = "application/json") %>%  
  bind_rows  

 
> 

MEANSST NMFSAREA READ_DATE YEAR JULIAN 

4.94 640 1999-12-31T12:00:00Z 1999 365 

 

 

httr::content 

(  httr::GET('https://apex.psmfc.org/akfin/data_marts/akmp/nmfs_area_crw_avg_sst?nmfs
_area=640&days_back=2'),  
  type = "application/json") %>%  
  bind_rows  

 
> 

MEANSST NMFSAREA READ_DATE YEAR JULIAN 

13.37 640 2021-08-12T12:00:00Z 2021 224 

13.39 640 2021-08-13T12:00:00Z 2021 225 

13.53 640 2021-08-14T12:00:00Z 2021 226 

 

R Code Chunk 4. The read_date parameter will access a single date record. Note that due to 
time zones and the web service configuration, the specified date is one day later than the 
extracted date. 

R Code Chunk 5. Web service query demonstrating use of the days_back command. In this 
case, the most recent three days are queried by specifying “days_back=2” which pulls two days 
back from the most recent record. 
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httr::content(   

httr::GET('https://apex.psmfc.org/akfin/data_marts/akmp/nmfs_area_crw_avg_sst?nmf
s_area=640&read_date=20000101&days_back=2'),  
  type = "application/json") %>%  
  bind_rows  

 

> 

MEANSST NMFSAREA READ_DATE YEAR JULIAN 

5.43 640 1999-12-29T12:00:00Z 1999 363 

5.13 640 1999-12-30T12:00:00Z 1999 364 

4.94 640 1999-12-31T12:00:00Z 1999 365 

httr::content(   

httr::GET("https://apex.psmfc.org/akfin/data_marts/akmp/nmfs_area_crw_avg_sst?nmf
s_area=640,650"),  
  type = "application/json")%>%  
  bind_rows 

 

> 

MEANSST NMFSAREA READ_DATE YEAR JULIAN 

13.53 640 2021-08-14T12:00:00Z 2021 226 

14.19 650 2021-08-14T12:00:00Z 2021 226 

 

R Code Chunk 6. A date can be used in conjunction with the days_back parameter. In this case, 
the three days prior to the start of 2000-01-01 are queried by specifying this date and 
“days_back=2.” 

 

R Code Chunk 7. Web service query of multiple different NMFS areas (640, 650). Queried 
areas are separated by a comma with no spaces. 
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R Code Chunk 8. Web service query and subsequent commands, demonstrating a workflow that 
avoids saving intermediate objects to produce a figure. In this case, SST for NMFS Areas 640 
and 650, averaged for June, July, and August. 

httr::content(   

httr::GET('https://apex.psmfc.org/akfin/data_marts/akmp/nmfs_area_crw_avg_sst?nmf
s_area=640,650&start_date=19850101&end_date=20220101'),  
  type = "application/json") %>%  
  bind_rows %>%  
  mutate(MONTH=month(as_date(READ_DATE))) %>% # Extract month  
  filter(MONTH==6 | MONTH==7 | MONTH==8) %>% # Filter summer months 
  group_by(YEAR,NMFSAREA)%>% 
  summarize(SST=mean(MEANSST))%>% # Average by year and area. 
  ggplot(aes(as.numeric(YEAR),SST)) +  
  geom_line() +  
  facet_wrap(~NMFSAREA, nrow=2) + 
  xlab("Year") + 
  theme_bw() 

> 
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lkp <- readRDS("Data/crwsst_spatial_lookup_table.RDS")  
 
unique(lkp$Ecosystem_sub) 

 
> 

## [1] NA                        "Northern Bering Sea"     
## [3] "Western Gulf of Alaska"  "Eastern Gulf of Alaska"  
## [5] "Southeastern Bering Sea" "Eastern Aleutians"       
## [7] "Central Aleutians"       "Western Aleutians" 

 

httr::content( 
  httr::GET('https://apex.psmfc.org/akfin/data_marts/akmp/ecosystem_sub_crw_avg_sst?e
cosystem_sub=Southeastern%20Bering%20Sea'),  
  type = "application/json") %>% 
  bind_rows 
> 

MEANSST ECOSYSTEM_SUB READ_DATE YEAR JULIAN 

10.85 Southeastern Bering Sea 2021-08-29T12:00:00Z 2021 241 

 
  

R Code Chunk 9. Query the spatial look-up table for the CRW SST data set to view the names 
of the Ecosystem_sub areas from the Ecosystem Status Reports. This query simply pulls from 
the Github repo for this project. A later code chunk will query a look-up table from the AKFIN 
database using SQL. 

R Code Chunk 10. Web service query for the most recent record in the Ecosystem_sub area 
“Southeastern Bering Sea.” Note that spaces are filled with “%20.” Names for each 
Ecosystem_sub area are presented in the previous query. 
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R Code Chunk 11. Web service query to plot the full time series for the eastern Gulf of Alaska 
and eastern Aleutian Islands from 1985 - present. Note the comma to separate regions and the 
“%20” to fill spaces in the character strings. 

httr::content( 
  httr::GET('https://apex.psmfc.org/akfin/data_marts/akmp/ecosystem_sub_crw_avg_sst?e
cosystem_sub=Eastern%20Gulf%20of%20Alaska,Eastern%20Aleutians&start_date=19850101&end
_date=20220101'),  
  type = "application/json") %>%  
  bind_rows %>%  
  mutate(date=as_date(READ_DATE)) %>%  
  ggplot(aes(date,MEANSST)) +  
  geom_line() +  
  facet_wrap(~ECOSYSTEM_SUB) 

> 
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R Code Chunk 12. Web service query to plot the annual averages for NMFS areas 640 and 650. 
Note that annual averaging is performed downstream of the web service query. 
httr::content( 
  httr::GET('https://apex.psmfc.org/akfin/data_marts/akmp/nmfs_area_crw_avg_s
st?nmfs_area=640,650&start_date=19850101&end_date=20220101'),  
  type = "application/json") %>%  
  bind_rows %>%  
  mutate(date=as_date(READ_DATE), 
         YEAR=as.numeric(YEAR)) %>%   
  group_by(YEAR,NMFSAREA) %>%  
  summarise(meansst=mean(MEANSST)) %>%  
  ggplot(aes(YEAR,meansst)) +  
  geom_line() +  
  geom_smooth() + 
  facet_wrap(~NMFSAREA, nrow=2)+ 
  theme_bw() 

> 
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Oracle Database Queries 

The following section includes a combination of standalone SQL queries and SQL 

queries embedded within R function calls. Standalone SQL queries are often executed from a 

software application like SQL Developer. Alternatively, as we demonstrate below, SQL can be 

executed from RMarkdown by specifying that a chunk uses SQL instead of R. First, an R 

connection with the Oracle database must be established as in R Code Chunk - 14 below. They 

can also be executed from within R functions to create a mixed R/SQL workflow. 

A note of caution that when querying data from the database, these are large gridded data 

sets so beware that queries may be large and take a while to execute. You may want to execute a 

count query prior to pulling the data.  
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select * from  afsc.erddap_crw_sst  
where rownum<=5 

> 

5 records 

READ_DATE CRW_ID TEMP 

1985-04-03 12:00:00 66728 -1.72 

1985-04-03 12:00:00 66729 -1.72 

1985-04-03 12:00:00 66730 -1.71 

1985-04-03 12:00:00 66731 -1.70 

1985-04-03 12:00:00 66732 -1.69 

R Code Chunk 13. Demonstration of connection to Oracle via R. For confidentiality, we have 
omitted our login credentials but users would substitute the UID and PWD parameter values here 
for their own AFKIN database credentials. Please contact the authors regarding acquisition of an 
AKFIN Oracle account. In this case, the database connection is saved as the object “con” for 
later use. For assistance in configuring your computer for an Oracle connection through R, 
contact your IT help desk. The authors can also assist with technical questions regarding 
configuration. 

#library(odbc) # For connecting to oracle database 
 
#  Load the AKFIN database user name and password from an external file. 
#  This step can be circumvented by entering your credentials directly into t
he dbConnect() function below. 
#  Alternatively, credentials can be confidentially stored separately in a cs
v as shown here. 
params <- read_csv("markdown_odbc_params.csv") 
 
#  Connect to the AKFIN database 
con <- dbConnect(odbc::odbc(), "akfin", UID=params$uid, PWD=params$pass) 
 

SQL Code Chunk 1. Using the previously established R connection with the database (“con”), a 
SQL code chunk can be executed in Markdown by specifying ```{sql, connection=con} as 
the chunk header instead of the typical ```{r}. Alternatively, this SQL query could be executed 
normally from SQL Developer or a similar editor. Here we query the first five rows of the CRW 
SST data set. We limit the query here as this is the full gridded data set with more than one 
billion records. Note that this data set displays no spatial information as currently configured. 
Rather, the spatial information will subsequently be joined using the CRW_ID field. 
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SQL Code Chunk 2. Oracle query of the first five rows of the CRW SST spatial look-up table. This table contains the spatial 
associations that will provide valuable context to the previous query. 

select * from  afsc.erddap_crw_sst_spatial_lookup  
where rownum<=5 

> 

5 records 

ID Statefed STAT_AREA DEPTH LONGITUDE LATITUDE NMFSAREA BSIERP_ID BSIERP_NAME ECOSYSTEM ECOSYSTEM_SUB CRAB 

105972 FED 715600 -463 -171.075 56.275 521 8 North outer Eastern Southeastern NA 
shelf Bering Sea Bering Sea 

105973 FED 715600 -371 -171.025 56.275 521 8 North outer Eastern Southeastern NA 
shelf Bering Sea Bering Sea 

105974 FED 705600 -181 -170.975 56.275 521 8 North outer Eastern Southeastern NA 
shelf Bering Sea Bering Sea 

105975 FED 705600 -156 -170.925 56.275 521 8 North outer Eastern Southeastern NA 
shelf Bering Sea Bering Sea 

105976 FED 705600 -129 -170.875 56.275 521 8 North outer Eastern Southeastern NA 
shelf Bering Sea Bering Sea 
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select read_date, 
        temp, 
        to_char(read_date,'YYYY') as Year, 
        crab 
from   afsc.erddap_crw_sst a 
INNER JOIN (select * from afsc.erddap_crw_sst_spatial_lookup 
where crab <> 'NA') b 
ON a.crw_id =b.id 
where rownum<=5 

> 

5 records 

READ_DATE TEMP YEAR CRAB 

1991-01-02 12:00:00 3.54 1991 bb 

1991-01-01 12:00:00 3.44 1991 bb 

1991-01-05 12:00:00 5.29 1991 bb 

1991-01-03 12:00:00 3.69 1991 bb 

1991-01-04 12:00:00 4.18 1991 bb 

 

  

SQL Code Chunk 3. Oracle query of the CRW SST data where the crab management areas are 
not null. To join the SST data with the look-up table that contains the crab areas, the query joins 
the CRW_ID field from the gridded SST data set with the ID field from the look-up table. Again, 
the view here is limited to the first five rows. The “temp” variable is the SST field. 
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R / SQL Code Chunk 1. SQL queries can be executed from within an R function using a 
traditional RMarkdown chunk or within a traditional R script. Here the SQL query is embedded 
within the requisite dbFetch(dbSendQuery()) functions to execute the query and plot a time 
series where the crab management field is equal to “bb” (Bristol Bay). 

dbFetch(dbSendQuery(con, 
                    "select read_date, 
                                   round(avg(temp),2) as sst, 
                                   crab 
                            from afsc.erddap_crw_sst a 
                            INNER JOIN (select *  
                                      from afsc.erddap_crw_sst_spatial_lookup 
                                      where crab = 'bb') b 
                            ON a.crw_id = b.id  
                            group by  
                               crab, 
                               read_date")) %>%  
  ggplot(aes(READ_DATE,SST)) +  
  geom_line() +  
  geom_smooth() 

> 
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R / SQL Code Chunk 2. SQL query of the OI_SST data set for the Eastern Gulf of Alaska for 
2009-04-04. In this example, the data are saved as an object and plotted on a map of Alaska. 

oisst<-dbFetch(dbSendQuery(con, 
               paste0("select read_date, temp, ecosystem_sub, longitude, latitude 
                       from afsc.erddap_oi_sst a                             
                       INNER JOIN (select *  
                                   from afsc.erddap_oi_sst_spatial_lookup 
                                   where ecosystem_sub = 'Eastern Gulf of Alaska') b 
                        ON a.oi_id = b.id 
                        where read_date='04-JUL-09'"))) 
 
# More packages for mapping 
require(rnaturalearth) 
require(rnaturalearthdata) 
 
ggplot()+ 
  geom_tile(data=oisst, aes(LONGITUDE, LATITUDE, fill=TEMP))+ 
  geom_sf(data=ne_countries(scale = "medium", returnclass = "sf"), fill="gray60") +  
  scale_fill_viridis_c() + 
  theme_bw() + 
  xlim(c(-145,-130)) + 
  ylim(c(53,60)) 

> 
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R / SQL Code Chunk 3. SQL query of MUR SST associated with observer-reported catches of 
salmon sharks in the pelagic trawl fishery operating in NMFS areas  ≥ 620. The histogram 
illustrates the temperatures at which salmon sharks were caught by this fleet. 

dbFetch(dbSendQuery(con, paste0( 

        "select distinct(a.haul_join), a.avg_sst_celsius as SST, b.obs_specie_code 
                                from council.comprehensive_obs a 
                                left join (select obs_specie_code, haul_join 
                                from council.comprehensive_obs 
                                where obs_specie_code=67) b 
                                on a.haul_join=b.haul_join 
                                where a.reporting_area_code>= 620 and 
                                a.avg_sst_celsius>0 and 
                                a.akr_gear_code = 'PTR'"))) %>%  
  filter(OBS_SPECIE_CODE==67) %>%  
  ggplot() +  
  geom_histogram(aes(SST)) 

> 
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